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Abstract: We obtained the exact Green
functions, in the Laplace domain, for a
diffusion-influenced excited-state rever-
sible geminate ABCD reaction with
two different lifetimes and quenching

long times, respectively. The short-time
approximations obtained in this work
are valid for ¢ < |K|™', where K de-
pends on several parameters of the
system. The analysis of the long-time

asymptotic behaviors reveals rather
complex kinetic transitions dependent
upon the field and lifetimes. We also
find a destructive interplay leading to
the reduction in the number of kinetic

processes under a constant external
field in one dimension. Analytic ex-
pressions for the survival probabilities
of the initial and final states are ob-
tained in the time domain at short and

Introduction

Under most experimental conditions, an external field is in-
evitable, be it gravitational, electric, or magnetic (strictly
speaking, all of them exist at all times, usually with weak
strengths). Such an external field may increase or decrease
the population of a specific state of a pair (e.g., magnetic
field-dependent population of the singlet state of a radical
ion pair)!! or the rate of reaction (e.g., the rate of reaction
between charged particles under an electric field).”! There-
fore, the reaction kinetics may show field-dependent behav-
ior (field effect). In the present model, we assume a con-
stant (external) electric field, which can be easily realized in
usual conditions and its effect can be interpreted relatively
in a straightforward manner compared to that of the mag-
netic field effect (involving spin dynamics).?’

The effect of the constant electric field on the diffusion-
influenced reaction has been studied for several decades. It
has been shown as a kinetic transition behavior in the trap-
ping problem (chemical species in excess are static and the
other species are moving) where the long-time asymptotic
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transitions similar to that found for the
excited-state geminate ABC reaction
with an external field in one dimen-
sion.

behavior changes from a stretched exponential relationship,
exp(—t*), to a purely exponential one by increasing the
strength of an applied external field." For the target prob-
lem (the opposite case to the trapping problem), Tachiya
et al. have studied the field-dependent steady-state rate co-
efficient.’! For geminate reactions, the field effect causes a
kinetic transition behavior from a power-law relationship to
an exponential one, as the field strength increases.”

A geminate reaction is interesting because the system can
be readily prepared by laser pulses and its theoretical study
does not involve the many-body effects. Examples of gemi-
nate reactions are the excited-state proton transfer from a
photoacid to solvent (PTTS),’! fluorescence kinetics in
Green Fluorescence Protein,'” and so forth. For many
cases, the exact Green functions for the geminate problems
have been obtained in the Laplace or time domain. %3
These Green functions have been utilized in the accurate
Brownian dynamics simulations!™! and in the theories for
the corresponding many-body problems."”! Thus, the study
of the field effect on the geminate reaction may provide
some insights into the many-body problems.

Hong and Noolandi were able to obtain the exact Green
function for an irreversible geminate recombination (or neu-
tralization of charged particles) under the Coulomb poten-
tial in the presence of an external electric field in three di-
mensions (3D). The analysis of the long-time asymptotic be-
havior revealed a kinetic transition behavior arising from

Chem. Asian J. 2008, 3, 1266-1276


www.interscience.wiley.com

the field effect, whose dynamics change from a power-law to
an exponential relationship as the field strength increases.”!

For the reversible geminate A +B«—C (ABC) reactions in
one dimension (1D), Kim et al. investigated the field effect
on these reactions by mapping the exact Green functions for
the excited-state reversible geminate ABC (geminate ES-
ABC) reaction without a field"! into those for the reversi-
ble geminate ground-state ABC (geminate GS-ABC) and
geminate ES-ABC reactions under a constant external
field.*” They found that the number of kinetic transitions
may vary, which is caused by the interplay of the field and
lifetimes.”!

In our previous work for the ground-state reversible gemi-
nate A+B«~C+D (ABCD) reaction,' we obtained the
exact Green functions in the Laplace domain and investigat-
ed the field effect on the survival probabilities of the reac-
tant and product states. By analyzing the long-time asymp-
totic behavior, we found rather complex kinetic transition
behavior depending on the directions of the applied fields
and the difference of the field strengths on the reactant and
product states. By analogy to the geminate ES-ABC reac-
tion, for the excited-state reversible geminate ABCD (gemi-
nate ES-ABCD) reaction under an external field, it is ex-
pected that the number of kinetic transition may also vary
by a similar destructive interplay. Therefore, we expect an
even more complex field-dependent kinetic transition be-
havior than that for the ground-state reversible geminate
ABCD reaction.

In this work, we investigate the geminate ES-ABCD reac-
tion with two different lifetimes and an added quenching
process under the influence of a constant external field by
analyzing the survival probabilities obtained from the exact
Green functions in the Laplace domain.

Exact Results in Laplace Space

The schematic representation of the ES-ABCD reaction in
the present work is given by [Eq. (1a)]-[Eq. (1e)]

A* 4 B%C*+D (1a)
A" +BALA 4B (1b)
C+D*5,C+D (1c)
A LA (1d)
(RN (le)

The superscript * denotes the excited state, whereas k;
and k, are the forward and backward rate coefficients, re-
spectively. k,, (i =1 and 2) is the unimolecular decay rate
coefficient and k,; (i = 1 and 2) is the quenching rate coeffi-
cient, which is introduced in order to describe the collision
induced deactivation of a reactive molecule with its reaction
partner.
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In the present system, there are two different states to be
considered. Let us denote state 1 for A and B particles,
and state 2 for C* and D particles. Then, the distance be-
tween A* and B (C* and D) is denoted by x; (x,), which
ranges from 0 to infinity. The relative diffusion constants in
these states, which may differ, are D, = D,. + Dy for state
1 and D, = D¢ + Dy, for state 2. The linear potentials for
states 1 and 2 are u(x,)/kgT = 2a,x, and u(x,)/kgT = 2a,x,,
respectively. Note that, when a; > 0, the particles for the
corresponding state move towards each other whereas they
move away when a; < 0. The diffusion operators in these
states are determined by [Eq. (2)]

0

0
2 o 2ax T 2aix; 2
e e @)

A=D ox;
and these describe the relative motion of an A*B pair for
i=1and a C'D pair for i=2.

Let us denote the probability of finding an A*B pair sepa-
rated by x; at time ¢ by p,(x;,¢) and, similarly, p,(x,,?) for a
C'D pair. These probability densities obeys the following
Smoluchowski-type reaction-diffusion equations [Eq. (3a)]
and [Eq. (3b)]:

0
Epl(xlvt) = Aipi(x1,t) — [Wi(xy) + Woi (x1) + ki lpi (x4, 8)

+W,(x1)p2(0,1)
(3a)

0
apz(xzﬂ) = AoDs(%2,1) — [Wa(x2) + Win(x,) + ko]pa (x5, 1)

+Wi(x)p:(0,1)
(3b)

where the sink terms which describe the reactions are de-
fined as [Eq. (4)]
Wi(x;) = kid(x;), W(x;) = k,0(x;) 4)

The delta functions in the sink terms imply that the reac-
tions can occur only at the contact distance (or at the
origin) of each state. Because the reaction is introduced
using these sink terms, we assume that the p; obeys the re-
flecting boundary conditions at the origin of each state,
(0/0x; + 2a;)pi(x;, 1) |y,—0 = 0, Le., [5° dx; Aipi(x;,1) = 0.

Let us consider an initial state 1, with A* and B separated
by a distance x,, ([Eq. (5)])

P1(x1,0) = 6(x; — xp), p2(x,,0) =0 (5)

The probability density (“reactive Green function”),
obeying these initial conditions [Eq. (5)], of finding an A"B
pair separated by a distance x; at time ¢ is denoted by
p1(xy,tx0), and similarly, p,(x,, t|x,) for a C'D pair.

In the Laplace domain [f(s) = [;°dt f(t) exp(—st)], the
evolution equations of the reactive Green functions (GFs)
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for the chosen initial condition are expressed as [Eq. (6a)]
and [Eq. (6b)]

sp1(xy,8]x0) = O(x; — Xo) + APy (1, 5]%)
—[Wi(x1) + Wy (xy) + k1P (x4, 81%0)

+W,(x1)p (0, 5]x,)
(6a)

P2 (X, 81%0) =Aopr (X2, 51%0) — [Wa(x2) + Wip(x2) 4 ko] Po (2, 51%0)

+Wi(x2)p1(0, s]x0)
(6b)

By substituting [Eq. (4)], [Eq. (6a)] and [Eq. (6b)] can be
rewritten as [Eq. (7a)] and [Eq. (7b)]

(S — Al)ﬁl (X17S|xo) :5(X1 —Xo)
—[K1p1(0,5]x0) — k3P (0, 5]x)] 0 (xy ),
(7a)

(Su2 — A2)Pa (2, 80%0) = [k1P1 (0, 5|x0) — k5P (0, 5]x0)]0(x,),
(7b)

where s, = s+ k,; and K, = k; + k.
By introducing the non-reactive Green function (GF),

G(x;, s|x,), which satisfies [Eq. (8)]
(s — Ai)Gi(xi7s|x0) =0(x; — xo), (8)
with the reflecting boundary condition,

(0/0x; + 2ai)Gi(xi,s|xO)|x,:0 =0, [Eq. (7a)] and [Eq. (7b)] can
be rewritten as [Eq. (9a)] and [Eq. (9b)]

[71 (xl ) S|x0) :Gl (xl ySul |x0)
R R R (9a)
—[k191(0,5]x0) — kop2 (0, 51%0)] G (1, 5,1 10),
D2(x2,8|x0) = [kiP1(0,8]x0) — k'zﬁz((),S|xo)]G2(x2,s”2|0). (9b)

Setting x; =0 in [Eq.(9a)] and [Eq.(9b)], one gets
[Eq. (10a)] and [Eq. (10b)]

_ 1 + k/ZgZ(suZ)

P1(0,5]x0) = hi(s) G1(0,5./x0), (10a)
P2(0,s|x) = kl%(is)uZ) G1(0,5,41x0), (10b)

where g;(s) = G;(0,5/0) and [Eq. (11)]

h(s) = 14 K181(su) + k38> (800) + (KK, — kiky)81(501)82(8:2)-
(11)

Substituting [Eq. (10a)] and [Eq. (10b)] into [Eq. (9a)]

and [Eq. (9b)], one can obtain the reactive GFs in terms of
the non-reactive GFs as [Eq. (12a)] and [Eq. (12b)]
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ki + (Kiky — kiky)go(s.2)

P1 (xhs‘xo) = Gl (xnsm |x0) -

hs)
><Gl(xlasul|0)Gl(07sul |x0) ’
(12a)
i ki - .
pZ(x27 S‘XO) = W;) GZ(x27 su2|0)G1 (07 Sul ‘Xo), (12b)

By setting k,; = 0 and k,; = 0, [Eq. (12a)] and [Eq. (12b)]
reduces to results for the ground-state reversible geminate
ABCD reaction with the applied field, see [Eq. (21a)] and
[Eq. (21b)] in Ref. [8]. One gets the solution for the gemi-
nate ES-ABCD reaction by setting a; = 0 in [Eq. (12a)] and
[Eq. (12b)].' The solution for the geminate ES-ABC reac-
tion in the presence of a constant external field is obtained
from [Eq. (12a)] and [Eq. (12b)] by setting a, =0, k,, =0,
and by replacing &,(s,,) and G, (x5, 5,,|x,) by 1/s,,. It is obvi-
ous because the C* state can be changed only by the unimo-
lecular decay in the absence of a D particle. In this case, x,
is replaced by * representing the bound state and p,(x,, s|x,)
becomes the binding probability p, (x, s|x,).

The survival probabilities for states 1 and 2, S;(¢]x,), are
defined as the integrals of the corresponding probability
densities, [Eq. (13)]

Si(tlxo) = [;% dx; p;(x;, t]x,). (13)

Because [;°dx; G,(x;,s]x,) = ', by the integration of

[Eq. (12a)] and [Eq.(12b)], one gets [Eq.(14a)] and
[Eq. (14b)]

- 1 kK, 4+ (KK, — kiky)g)(s,0) -
Si(slxg) =— |1 - ! ( 2 2)8:(5%2) G1(0,5,x0) |,
Sut h(s)
(14a)
~ k o
85 (slx0) = —=—G1(0, 5,4 ]x0)- (14b)
Suzh(s)

The normalization condition [Eq. (15)],

S8 (s]xo) + Suzgz(s|xo) + kD1(0,51%0) + k2 (0, 51%) = 1,
(15)

can be easily verified.

In the previous work,®) we have obtained the non-
reactive  GF, G,-(x”s\xo), in the presence of an
external field. Introducing the transformation,
Fi(x,t|xy) = expla;(x — xo + a;D;t)]G;(x, t|x,), in the Laplace
domain, we have [Eq. (16a)]-[Eq. (16¢)]

Fix,slx) :exp[i\és\;—l?_.islx — o]
+ (\/E + ai\/ﬁi) eXp[_ \/m(x + xO)]
2v/Dis(\/s — ai/Dy) )

(16a)
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_ exp[—y/s/Dix]

ﬁi(x7s‘0) = Fi(O,S|X) - \/m_ D-a- > (16b)
J(s) = Fi(0,5]0) = (\/_ Da) ' (16¢)

Note that G;(x, s|x,) = exp[—
the Laplace domain.
Inserting [Eq. (16¢)] into [Eq. (11)], we get [Eq. (17)]

a;(x — XO)]E(X7S + a?Di‘xO) in

h(s) — (\/‘i+a//])(\/£+a//2) — a0, (17)
(\/s_l_al\/Dl)(\/g_ aszz)’
where we have defined s, =s,+a’D;, «;=k;/vD;,

a; = (k; + k,;)/v/D;, and &, = &, — a;/D;.

Substituting [Eq. (16a)]-[Eq. (16c)] and [Eq.(17)] into
[Eq. (12a)] and [Eq. (12b)] and after some manipulation,
one obtains the GFs [Eq. (18a)] and [Eq. (18b)]:

e“l(xl*xo) all(\/‘g + (ZHZ) — a0,

:Fl(x1751|xo) -

Pi(x1,80x) (V51 + ') (V5 + a's) — ara,

" exp[—+/s1/D; (% + x)]
VDi(y8 —aivDy)

(18a)

ay exp[—+/5,/Dyx, — \/51/D1x,]
VD3 [(/51 + a') (/5 + a'y) — agay]
(18b)

5 (v, s]xy) =

Generally, [Eq. (18a)] and [Eq. (18b)] cannot be inverted
analytically, except the special case when K =0 where
([Eq. (19)])

(19)

K = (kuZ +a§D2) - (kul +a%D1)’

which are given in Appendix A.

The survival probabilities are obtained by inserting
[Eq. (16a)]-[Eq. (16¢c)] and [Eq.(17)] into [Eq. (14a)] and
[Eq. (14b)] to obtain as [Eq. (20a)] and [Eq. (20b)]

V/81/D1)x]

[0 (/57 + a) — ayap] expl(a; —

1 —SulS](S|x0) = (\/ﬁ‘i’ a//l)(\/g+ a/lz) —a,a, ’
(20a)
8,055 (s]x0) = @ (V% — a,V/Dy) explla, - sl/Dl)xO] (20b)

(\/“" a”1)(f+ a’y) — a a,

Similarly, [Eq. (20a)] and [Eq. (20b)] cannot be inverted
analytically except for the case when K =0 (see Appendix
A).
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Short-Time Behavior

For the ABC and GS-ABCD reactions, it is known that the
short-time kinetics can be approximated better by using the
generalized Smolulchowski theory (GST) for the longer
times than a simple exponential decay. Moreover, the entire
kinetics of the survival probability can be approximated by
the sum of the GST term and its long-time asymptotic
term.['>1% This approximation describes the kinetics over the
whole time domain excellently, in which the GST is the
leading term.

However, the GST is not satisfactory for the geminate
ES-ABCD reaction in the absence of an external field at
longer times."”! For the geminate GS-ABCD reaction in the
presence of an external field the GST again does not give
satisfactory results and, therefore, we introduced an im-
proved short-time approximation which gives more accurate
results over longer times.”! Now we employ a similar short-
time approximation to the present system which is valid for
t<|K|™

Let us start from [Eq. (20a)] and [Eq. 20b)] and introduce
the short-time approximation, =s+m, where

((Eq- D))

S; RS,

m = min{k,, + @Dy, k,, + a3D,}. (21)

Because As; =|max{s; —s,|i =1,2}| = |K| is negligible
compared to s; at short times (s; > 4s;,), s; = s,, iS a reasona-
ble short-time approximation. As time increases, s decreases
and A4s; becomes comparable to s, When s,, = O(4s;), this
approximation is no longer valid, that is to say ¢ < |K|™" is
the range of validity of this short-time approximation. Sub-
stituting s; with s,, in [Eq. (20a)] and [Eq. (20b)], we obtain
[Eq. (22a)] and [Eq. (22b)]

816~ mbo) > e
al(\/-‘-l-a ) — 010 S
%Yﬁmmwwmnﬂw’ﬁﬁw
(22a)
Svz(Sm X)) (VB — a2V/D;) exp[—+/5,n/D1X] (22b)
aens (s, — K) (/S +00) (/S +03)
where [Eq. (23)]
20, =d’ | +ad',+ (—1)"\/(05”1 —a'y)? + daya,. (23)
Here, we have defined [Eq. (24)]
K=m-k, (i=1,2) (24)

The analytic expression in the time domain can be ob-
tained by inverting [Eq. (22a)] and [Eq. (22b)] as [Eq. (25a)]
and [Eq. (25b)]
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Si(tlxg)e™ — et o [ () — 01) a,a,)]
= Wiy, 0 Vi
em (0, —0y) (07 = Ky) (XO ' )

oyay(ay — ‘72) a,a,]
B (0, —01)(03 — Ky) W<XO702\/;)

al(a”Jr\/—) aa,
e R~y o V)

_ oy (¢ + VK — a0y W(Xo —\/7517)

2(01 + VK1) (0, + VK)
(25a)
Sy (tlxg)e™ ™ oy(0y +a2\/_.)
a, @ - o) — Ky Vi)
02(02+112\/_)
@ - — Ky " V)
\/E+a2\/—2
v =R (V)
VK~ a/D,

(XOa —@)

(25b)

2o 1 VK)o, 1 VK

where  yo = xo/vAD1t, W(x,y) = exp(2xy + y*)erfc(x +y),
and erfc(x) =1 — erf(x) is the complementary error func-
tion. When |K|<1, [Eq.(25a)] and [Eq.(25b)] can be
short-time approximate analytic solutions accurate towards
a fairly long time regime. When K =0, s; =s,,, and the re-
sulting S;(#|x,)’s are exact (see [Eq. (A6a)] and [Eq. (A6b)]
in Appendix A).

In Figure 1, we demonstrate the short-time approximation
to the effective survival probability S, (f|x,)e™ in comparison
with the exact solution obtained from the numerical inver-
sion of [Eq. (20a)], a) when a, > 0 and b) when a, < 0. The

b) f

S

1
a=-0.1 nm

S (t]x yexp(mi)

t/ns

Figure 1. The time-dependence of the effective survival probability,
S, (t]xy)e™, for positive and negative values of a;. The solid lines in this
Figure and all the other figures are the numerically inverted exact solu-
tions, [Eq. (20a)]. The dashed lines are the short-time approximation cal-
culated from [Eq. (25a)]. The parameter values are k; = k, = 1.0 nm/ns,
k, =k, = 0.1 nm/ns, kg =k, =01ns", D, = 1.0 nm?/ns,
D, =2.0 nm*/ns, x, = 1.0 nm, and a, varies as indicated in the Figure
(K >0). The value of a, is given by a)a,=01nm™' and
b)a, = —0.1nm".
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short-time approximation is valid for ¢ < 0.2|K|™ = 20 ns. It
is interesting to note that the time range of validity for the
short-time approximation is much longer in each graph for
the negative a, than that for the positive.

Long-Time Asymptotic Behavior

As mentioned earlier in the Exact Results in Laplace Space
section, the time-domain expressions of the survival proba-
bilities can not be obtained analytically by inverting
[Eq. (20a)] and [Eq. (20b)] in the general case. However, as
we have shown in previous work,®'? the long-time asymp-
totic behavior can be analyzed in the time-domain.

We start from the series expansions of [Eq. (20a)] and
[Eq. (20b)] for the survival probabilities in the region of
s = —m, which lead to [Eq. (26a)] and [Eq. (26b)]

2 u Urr\/S,

Sl (sm - m‘x(]) 1K1 2_ Kl 5]‘91,{,27 (268.)
- v

SZ(sm - m‘xo) :KZ — KZ + Z z;ﬁ,s%f, (26b)

where K; is defined in [Eq. (24)] and the coefficients u;, u,,
Vi, V2, €, and ¢; are yet to be determined.

By inverting [Eq. (26a)] and [Eq.(26b)] into the time
domain, one can obtain [Eq. (27a)] and [Eq. (27b)]

Sy (t]x)e™ u1+\/_u2e‘+u{ \/—Q<\/_)}

(27a)
S, (txg)e™ =(vy + \/_Vz ¥4 Vz{

+i (2i - 1 ”¢>zl
i=1

- VK (V) |

(27b)

where Q(y) = W(0,y) = exp(y*)erfc(y) and
2i—1)'=(2i—1)(2i —3)---3-1. Using the symmetric re-
lation of the complementary error function,!”” one can
easily obtain the long-time asymptotic form of Q(yv/7) as

[Eq. (28)]

1 1
———————, when |arg y| < 37/4,
yWat  2y3ty/mt (28)

26" — Q(~yVi) |

QyVi) ~
when |arg y| > 37/4.

Substituting [Eq. (28)] into [Eq.(27a)] and [Eq. (27b)],

the long-time asymptotic expressions of the survival proba-
bilities can be obtained in the following forms [Eq. (29a)]

Chem. Asian J. 2008, 3, 1266-1276
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and [Eq. (29b)]:
Sy (t|xo)e™ ~ Ajeft' + B2, (29a)
S, (txg)e™ ~ A + By, (29b)

where A; and B, are the unknown coefficients to be deter-
mined. Note that one can find, from [Eq.(29a)] and
[Eq. (29b)], that S;(¢|x,) exp(mt) undergo a kinetic transition
when the K; values changes sign.

Determination of A; Values

We now determine the unknown coefficients A; and B; by
applying the method developed in the previous work.®
First, we determine A; by taking the limit
s — min{k,,, k,, +a3;D,} as follows:

1) When k,, +a3D, > k,, (or K; > 0), by taking the limit
sa — 0, we get [Eq. (30a)]

A = limosu1~§1 (s]xo) = lim S, (¢]xo) exp (ki 1)
8§y — [—00

_ [ai(d + VaiD, + K) — aya,] exp[2a, H(—a,)x]

[ —2a,v/DiH(—a))](a'; + /@D, + K) — a,a, ’
(30a)

where H(x) is the Heaviside step function [H(x) = 1 when
x>0 and H(x) =0 when x < 0]. Note that S, (¢|x,) exp(mt)
undergoes a kinetic transition according to the sign of the
applied field, a,, because A; =0 when a; >0 and A, #0
when a; < 0.

2) When k,, + a2D, < k,; (or K, < 0), by taking the limit
s, — 0, we get [Eq. (30b)]

lim 5,8, (s|x,) = lim S, (¢]x,) exp|(k,, + a2D,)1]
w o (30b)
= lim[A, exp(K,1) + B, *?] =0.

1—00

Because [Eq. (30b)] vanishes, it is safe to set A; = 0. Note
that, in this case, S, (¢|x,) exp(mt) follows a /> power-law
behavior.

Similarly, one can obtain A, by
s — min{k,,, k, +a’D,} as follows:

1) When k, +aiD; > k,, (or K, >0), by taking limit
s — 0, we get [Eq. (31a)]

taking limit

AZ = lilnoleSZ(sl'xO) = lim S2(t‘)€0) exp(kuZt)
Syp— t—00

_ 204a,v/D,H(—a,) exp[(a1v/D, — /3D, — K)xo/ VD]
(a'y ++/a3D, — K)[a", — 2a,\/D,H(—ay)] — oy, '
(31a)

Similarly to S, (t|x,) exp(mt) when K; > 0, S,(|x,) exp(mt)
undergoes a kinetic transition according to the sign of a, be-
cause A, = 0 when a, > 0 and A, # 0 when a, < 0.
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2) When k,, +a;D; < k,, (or K, < 0), by taking the limit
s; — 0, we get [Eq. (31b)]

lim 5,8, (s|xo) = lim S,(¢]x) exp((k,; + a1 D;)1]
- o (31b)
= lim[A, exp(K,t) + B, *?] =0.

1—00

Therefore, it is safe to set A, =0. In this case,
S, (t|x,) exp(mt) obeys a t~*? power-law behavior.

In summary, we can determine A; explicitly when K; > 0
while the A; term is set to 0 when K; < 0.

Determination of B; Values

Next, we need to evaluate the coefficients B, and B, for the
asymptotic kinetics of the survival probabilities. From the
asymptotic expansion of S;(s|x,) and the theory of the Lap-
lace transform, we can obtain the coefficients of /> (See
Appendix B) as in previous work.®!

From the series expansions of [Eq. (20a)] and [Eq. (20b)]
in the region of s = —m, one obtains f;, the coefficient of
/S, [see Eq. (B2) in the Appendix]. We have two cases for
B: depending on the sign of K, f3;;. The first subscript de-
notes the state of the geminate pair, i =1 or 2 for the A"B
or C'D pair, respectively. The second subscript denotes the
sign of K, j=1 or 2 for K > 0 or K < 0, respectively.

1) When K > 0 [Eq. (32a)] and [Eq. (32b)],

e [d) (a"y + VK) — aya))

ﬁl‘l -
(o' + VK) — aya
(32a)
| Xo N 'y + VK
VDy o ai(ay + \/I?) — a4y '
B — e a, (a,/D, — VK) n 'y + VK
! a'(a", + VK) —aya, |VDi oy (ay + VEK) — i,

(32b)

2) When K < 0 [Eq. (33a)] and [Eq. (33b)],

_ ayap(a/Dy — VIK]) K|
P e+ VIR — ] exp[(‘“ DH

”1 + v/ |K ') — ala2]

ﬁ‘ =
22 a”1+\/|K a’y — a0,

(33b)

By substituting [Eq. (32a)], [Eq. (32b)] and [Eq. (33a)],
[Eq. (33b)] into [Eq. (B7) in the Appendix], one obtains the
asymptotic behavior from [Eq. (B3)] as shown in [Eq. (34)]

ﬁiv/ 132,

S;(t]xy) exp(mt) ~ A; exp(Kit) + TN

(34)
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Considering  [Eq. (30a)], [Eq. (30b)], [Eq. (31a)],
[Eq. (31b)], and [Eqg. (34)], we find that the asymptotic be-
havior of the effective survival probability, S;(|x,) exp(mt),
shows rather complex kinetic transition behavior depending
on the signs of g;, K;, and K. Moreover, in certain cases, the
number of kinetic transitions reduces arising from the de-
structive interplay between the effects of the field and life-
times. It should be noted that the above-mentioned complex
kinetic transition behavior does not depend on the quench-
ing rate coefficients which influence only the amplitudes of
the long-time asymptotic behavior of the effective survival
probabilities (A4; and f;;). The long-time asymptotic behav-
ior of S;(f|x,)exp(mt) are summarized in Table1 and
Table 2.

In Figure 2, the time-dependence of the effective survival
probability, S, (#|x,) exp(mt), and the magnitude of its devia-
tion from A, exp(K;t), |S;(t|x,) exp(mt) — A, exp(K,t)|, are
shown for the positive value of K. The kinetic transition is
clearly shown depending on the sign of a, in Figure 2a ) and
the power-law component of the long-time behavior of
S, (t|x,) exp(mt) is shown in Figure 2b).

Destructive Interplay between the Effects of Field and
Lifetimes

Recently, Kim and Shin investigated the geminate ES-ABC
reaction with a constant external field in 1D.["" They found
that the number of kinetic transitions is found to be one or
zero by varying the difference between the lifetimes. The
latter case arises from the destructive interplay between the
field intensity and lifetimes. By analogy, we also expect that
the number of kinetic transitions in the present problem
varies with changes in the applied field and lifetimes.

As was shown previously, the long-time asymptotic behav-
ior of the effective survival probabilities, S;(t|x,) exp(mit), is

Table 1. Long-time asymptotic behavior of S, (¢|x,) exp(mit).

S. Park and K. J. Shin

-1
a=-0.1nm

10 F

a= 0.1 nm’”'
10-3 o ud ul . o
10" 10 10' 10° 10° 10 10" 10° 10° 10° 10° 10

t/ns

Figure 2. a) The time dependence of the effective survival probability,

Si(t}xo)e™, and b)its magnitude of the deviation from A",

|8, (t|xo)e™ — A,eX|, for positive values of K. The solid lines for the
exact kinetics are taken from those in Figure 1a. The dashed lines are
the long-time asymptotic behavior calculated from [Eq. (34)]. The values
of the parameters are the same as those used in Figure 1a.

given by [Eq. (34)]. For the state i, when K, < 0, the first
term on the right hand side of [Eq. (34)] decays exponential-
ly. Thus, the kinetic transition depending on the sign of the
applied field ag; disappears. Note that when two lifetimes are
the same, there is no such destructive interplay.

The destructive interplay can be understood as follows.
As the unimolecular decay rate (k,;) for the given state i in-
creases, the ES geminate pair in this state decays to the
ground-state (GS) faster. Then, the lifetime effect on the
state i overcomes those of the field and lifetime on the
other state, j, when K; < 0 (i.e., k,; > k,; +a;D; for i,j = 1,2
and i # j) and the first term A, exp(K;t) of the effective sur-
vival probability in [Eq. (34)] vanishes regardless of the di-
rection of the field.

a;>0 a,;<0
2 ﬁl i o P Dyt ﬁl 1’73/2
S (¢ % yelbar D . gooioe  Pul
K>0 K, >0 (] xg)e 2K,\E i1 2K1\/;
B, g7 @iy, Py 47
2 At e =
Kl >0 (hyp+ay Dyt 2K1“/; 1 2K|\/;
K<0 S,(t]x)e™ 3
ﬂl,zt
K, <0 2K
Table 2. Long-time asymptotic behavior of S, (t|x,) exp(mt).
a,>0 a,<0
ﬂ:,lt'3 :
K;>0 - 2K 7
K>0 S (] xa)"(k"lﬁxn‘)l 372 =312
K ﬁzg’ Y e(aZZDZ-K){+ /))2,11
2>0 2K,V7 ’ 26,7
2 B, 2[73/2 e P e
(gD, : Aoy ot
K<0 K,<0 S:(t1xe 26,7 ? 2k
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In Figure 3, the time-dependence of the effective survival
probability S, (¢]x,) exp(mt) is shown for a negative value of
K. In comparison to Figure 2 a, the destructive interplay be-
tween the applied field and lifetimes is clearly shown in this
figure.

S (tbx, Jexp(mt)

10-‘ 1 | 1
10° 10' 10° 10°

t/ns

Figure 3. The time dependence of the effective survival probability,
S, (t]xy)e™, for negative value of K,. The dashed lines are the long-time
asymptotic behavior calculated from [Eq. (34)]. The values of the param-

eters are the same as those used in Figure 1 except k,, =02 ns™' and

a, =0.1nm".

Asymptotic Behavior when a;,=0

For the geminate GS-ABCD reaction under a constant ex-
ternal field,”™ we found that the long-time asymptotic behav-
iors of the survival probabilities become simpler when one
of the a;'s vanishes, that is, simple ¢~'/> power-law behaviors
appear. Now we investigate the long-time asymptotic behav-
iors of the effective survival probabilities in this case for the
present problem.

Case 1. a; = 0.

In this case, K = 4k, + a;D, (4k, = k,, — k,4) and A, van-
ishes. Then, the long-time asymptotic behavior of S, (¢|x,) is
changed as follows. When K >0 (m=k, or K, =0),
[Eq. (B2) of the Appendix] can be rewritten as [Eq. (35a)]

sulgl(s|x0) Nﬁl.lvsula (353)
that is, S(¢|xy)exp(k,f) behaves asymptotically as

[Eq. (35b)]

Sl (tle) exp(kult) ~ ﬂltl/\/E' (35b)

However, when K <0 (K; < 0), the asymptotic kinetics
follows [Eq. (34)] with a vanishing A; value(see [Eq. (30b)])
and S, (t]x,) exp(mt) shows a t*/? power-law asymptotic be-
havior. Therefore, S, (f|x,) exp(mt) undergoes a kinetic tran-

sition behavior from ¢t to /> power-law as K changes
from a negative to a positive value.
On the other hand, the asymptotic kinetics of

S,(t|x,) exp(mt) can be obtained from [Eq. (34)] for both
cases of K >0 and K < 0. Note that the destructive inter-

Chem. Asian J. 2008, 3, 1266-1276

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

CHEMISTRY

AN ASIAN JOURNAL

play occurs for S,(t|x,)exp(mt) when Ak, >0 (K, <0),
which shows a 12 power-law behavior for both negative
and positive values of a,.

Case 2. a, = 0.

In this case K = Ak, —a;D, and A, vanishes. Analogously
to case 1, when K < 0, [Eq. (B2) of the Appendix] can be
rewritten as [Eq. (36a)]

SuZSZ (s]x0) ~ ﬂz,zv Su2s (36a)
that is, S,(t]xy) exp(k,t) behaves asymptotically as

[Eq. (36b)]

S, (tlxo) exp(kat) ~ Pao/Vat. (36b)

When K >0 (K, <0), the asymptotic kinetics follows
[Eq. (34)] with a vanishing A, value (see [Eq.(31b)]) and
the kinetics of S,(f|x,) exp(mt) shows a ¢ power-law
asymptotic behavior. Therefore, S,(t|x,) exp(mt) obeys ¢/
and 1 ¥/? power-law behavior when K < 0 and K > 0, respec-
tively. On the other hand, S, (t|x,) exp(mt) follows [Eq. (34)]
and shows the destructive interplay when 4k, < 0 (K; < 0),
following t~*? power-law behaviour for both negative and
positive values of a;.

When both a;, =0 and a, = 0, the kinetics reduces to that
of the geminate ES-ABCD reaction without a field, that is,
when k, < k,, Si(t]x) exp(k,t) obeys t /2 power-law
asymptotic behavior, whereas S(f|x,)exp(k,t) follows a
73/ power-law when k,, > k,,."”

In. Figure 4, the time-dependence of the effective survival
probability S, (¢|x,) exp(mt) is plotted when a; = 0. The ki-
netic transition from +~/? to +'/> power-law behavior is
clearly seen as K changes its sign.

10" g 5
10"
i
=
=
=
[=%
>< 2
210
.
=
-
D k,=02ns",k,=0.1ns"
104 1 1 i
10° 10' 10° 10°
t/ns

Figure 4. The time dependence of the effective survival probability
S, (t|xo)e™ for vanishing a;, depending on the sign of K: K >0
(kg =01ns"' and k,=02ns"') and K<O0 (k,=02ns" and
k, =0.1ns™"). The dotted lines are the long-time asymptotic behavior
calculated from [Eq. (34)] and [Eq. (35b)]. The values of the other pa-
rameters are the same as those used in Figure 1 except D, = 1.0 nm*/ns.
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Conclusions

We obtained the exact Green functions for the geminate
ES-ABCD reaction in the presence of quenching processes
under a constant external field in 1D in the Laplace domain.
With these exact Green functions, we also obtained the sur-
vival probabilities for the reactant and product states. The
analytic expressions in the time domain could only be ob-
tained for the case when K = 0. However, we could obtain
analytic short-time approximations which are valid for
t < |K|™" and the long-time asymptotic expressions, which
allowed us to analytically investigate the effect of the field
and lifetimes on these survival probabilities.

By analyzing the long-time asymptotic behavior, we find
that the effective survival probability, S;(¢|x,) exp(mt), shows
a rather complex kinetic transition behavior depending on
the sign of the intensity of the external field a;. The destruc-
tive interplay between the lifetimes and field occurs when
the lifetime effect on one state exceeds the field and lifetime
effects on the other state (K; < 0). In this case, the kinetic
transition, which depends on the sign of a, disappears.
When one of the field effect vanishes, for example, a; =0,
the effective survival probability, S;(¢|x,) exp(mt), obeys a
t~'/* asymptotic power-law behavior when K > 0, whereas it
follows a t~*/? power-law when K < 0.

The above-mentioned complex kinetic transition behavior
does not depend on the quenching rate coefficients which
only influence the amplitudes of the long-time asymptotic
behaviors of the effective survival probabilities.

Because the Green functions for a geminate problem can
be utilized in the simulations!" and the theory of the corre-
sponding many-body problem,!'”) our Green functions may
have applicability to more general cases. Also, the field and
lifetime effects investigated in this work may help us to un-
derstand the rich kinetics of ABCD reaction, which may be
found in relevant experiments.

Appendix A.
Exact Green Function when K=0

Let us define the transformation'® [Eq. (A1)]
qi(x;, t]x0) = explax; — ayxo + a>Dit + k,it)p;(x;, t]x,) (A1)

and £=s, =s,. Then, the GFs from [Eq.(18a)] and
[Eq. (18b)] can be rewritten as [Eq. (A2a)] and [Eq. (A2b)]

q1(x1, &lxo) :ﬁl(xly &lxo)

_ [} (VE + @) — ayap] exp[—/E/ D1 (x1 + X))
VDi(VE —a,vD)(VE+ o) (VE+ 0,)
(A2a)

_ ayexp[—\/&/Dyx, — \/§/D\x]

G2 (%2, &lx,) = D VEr o) (VELo) (A2b)
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where the o; terms are defined in [Eq. (23)].

[Eq (A2a)] and [Eq. (A2b)] can now be analytically in-
verted into the time domain to give [Eq.(A3a)] and
[Eq. (A3b)]

q: (xy, txo) =Fy(xy,t|x,)

1 {oz[a’l(a”z —0,) — 0]

T D \(0s — 01)(0, + arv/Dy)
0,]o(ay — 01) — o))

0 — oo L aryDy) b 200 ﬁ)}

*a1W<X1 + X0, — Dlt) )

W(X1 +X0702\/Z)

(A3a)
q> (%3, %) :*02 — o, W(Xz +X0701\ﬁ)} ) (A3b)
where  y, =x,/v4Dit, y;=x;/v/4Dit (i=1,2), and
[Eq. (A3¢)]

Fy(x,, 1) = 1 [e—(zl—m)z + e—(aam):]
2\/.77:Dlt (A3C)

+(11W(X1 + Xo, —ay Dlt)

Let us define the effect survival probabilities, S;(t]x,), as
[Eq. (A4)]

Sitheo) = Si(tlxo) exp(mt). (A4)

Then, these effective survival probabilities in the Laplace
domain can be written as [Eq. (A5a)] and [Eq. (A5Db)]

wol o E)e]

1 (& aD)s ) = AV G s

(VE+0)(VE+ )
(ASa)
2 o _ a1(\/§ - az\/D_z) 3
(& —ayD,)S; (Elx) = (\/§+01)(\/§+02)6Xp|:(a1 - Dl>xo]~
(ASb)

In the time domain, S;(t|x,) are obtained by the direct in-
tegration of [Eq. (A3a)] and [Eq. (A3b)] or inversion of
[Eq. (A5a)] and [Eq. (A5b)] as [Eq. (A6a)] and [Eq. (A6b)]

S\ (tlxy) — eP o[ (o' — 0y) — ay )
= w t
e (0, — 01)(0f — aiDy) (v 011)

oy (a) — 0y) — )
- W, 0 Vi
(02~ 0@ @Dy " ooV

ay (o, —a;v/Dy) — a o,

_2(01 — a;v/Dy) (0, — a,/Dy)

_%W<Xm - D1t> )

W(Xmal Dﬂ)

(A6a)
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Sy (tlxy) a W (x0, 01V1) W (%0, 02V1)
o en%o 7(02 —oy)(0y — az\/D—z) B (0, —0y) (0, — az\/D_z)
az\/D_zw(XOaaz\/D—zt)
(01 — az\/D—z)(Gz - az\/D—z) '

(A6b)

Using the symmetric relation of the complementary error
function,'” we find that the long-time asymptotic behaviors
are obtained as follows [Eq. (A7a)] and [Eq. (A7b)]:

>
S; (I|X0) _ embit 20'1 [all (CUIZ - O'l) - 061(1.2] eomexu/\/D‘lH(_o-l)
(0, —01)(0] —aiDy)

_ 202 [a; (a”z - 02) - OL1O£2] eo%tJrszﬂ/\/D_lH(_O.z)
(0 — 01)(03 — aiD,)
. all(a/lz _alle) — a0, eafDlH,aleH(_al)

(0 — a;v/Dy)(0, — a,/Dy)

_ea%Dt—alx(;H(al)

e“1Xo

L o o +0, a ayd’y — aja,
vD, 010, aja’y—a0,) 20,0,a3D t\/at
(A7a)
S5 (t]xo) zolea%/wm/\/EH(_al) 202302[”2)(0/\/[)_11{(_02)
aen (0 —01)(01 —a/D,) (0, —01)(0, — a,\/D,)

2a, \/EzveaéDzHﬂzxﬂ \/[727[)_'1"1(7&2)
(0 — a:/D>)(@: — a/Ds)

n Xo 0, + 0, 1 1
vD, 010,  a,/D,) 20,0,a,t\/aD,t
(A7b)
Appendix B
Determination of the Coefficient of the t*?-Term Long-

Time Asymptotic Expansion of S;(t|x,) exp (m¢) when K0

From the theory of Laplace transform,'” we can write
$.8:(8|%0) — Si(0lxo) as [Eq. (B1)]

] r d
(8, — Ki)Si(8,, — mlxg) — S;(0]xo) = /dt e ki
0

(B1)

By taking the limit s,, — 0 and expanding the right side of
[Eqg. (20a)] and [Eq. (20b)], one finds that the asymptotic
form of the left side of [Eq. (B1)] is given by the functional
form as [Eq. (B2)]

(5n — Ki)Si(5 — m|xo) = Si(0]x0) ~ Bin/Sms (B2)
where f; is a field dependent coefficient.

On the other hand, one can rewrite [Eq.(27a)] and
[Eqg. (27b)] as [Eq. (B3)]
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S;(t|x) exp(mt) = A; exp(Kit) + Z yit U,

=

(B3)

where y;; terms are field dependent coefficients to be deter-
mined. [Eq. (B3)] can be rewritten as [Eq. (B4)]

Siltlxo) exp(kt) = A; + >yt I exp(—Kyp).

j=1

(B4)

By differentiating [Eq. (B4)] and using the fact that A; is
independent of ¢, one obtains [Eq. (B5)]

L s3(ebxo) explicat)] = — 37y [K+ G-+ 1/2)6 ] exp(=Kip),

j=1

(BS)
which can be asymptotically written as [Eq. (B6)]

i[S,.(t|x0) exp(kyt)] ~ =y Kit ¥ exp(=Kt). (B6)

dt

By substituting [Eq. (B2)] and [Eq. (B6)] into [Eq. (B1)],
we obtain the desired relation [Eq. (B7)]

b
il 2K,ﬁ

(B7)

Because we already know the expressions of A; given in
[Eq. (30a)], [Eq. (30b)] and [Eq. (31a)], [Eq. (31b)], we can
determine the asymptotic behavior without explicitly deter-
mining the unknown coefficients in [Eq.(27a)] and
[Eq. (27b)]. The coefficients for higher order terms in ¢ can
be determined by keeping more terms in [Eq (B2)] and

[Eq. (B3)].
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